9T45-Speed Sensor

Intermediate – Speed Sensor

Absolute Maximum Ratings

Characteristics	Symbol	Notes	Rating	Units
Forward Supply	Vcc		28	V
Voltage				
Reverse-Supply Voltage	Vrcc		-18	V
Operating Ambient	Та		-40 to 150	С
Temp				

Electrical Characteristics

Characteristics	Symbol	Test Condition	Min	Тур	Max.	Units
Supply Voltage	Vcc	T<=150C	4.0	-	24	V
Undervoltage Lockout	Vcc(uv)	Vcc, 0-5 or 5-0	-	3.6	3.95	V
Reverse Supply	Ircc	Vcc = Vrcc(max)	-	-	-10	mA
Current						

Magnetic Sensor Systems LLC 1738 Eaton Rd. Berkley, MI 48072

Confidential

www.magsensorsystems.com 313-355-3213

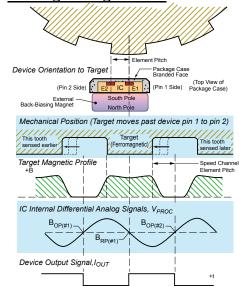
MSS

5-31-2017 Updated: 6/9/17

Magnetic Sensor Systems LLC

Supply Zener Clamp	Vzs	$Icc = Icc_max + 3mA,$	28	-	-	V
Voltage		Ta=25C				
Supply Zener Current	Icc	Ta=25C, Vcc=28V	-	-	19	mA
Chopping frequency	Fc	Ta =25C	-	400	-	kHz
Bypass Capacitance		Vcc to GND	-	2200	-	pF

Output Characteristics


Characteristics	Symbol	Test Condition	Min	Тур	Max.	Units
Power-on State	POS	-Н	-	Icc(Hig	-	-
				h)		
		-L	-	Icc(Low	-	-
)		
Supply Current	Icc(low)	Low-Current State	5.9	-	8.4	mA
	Icc(High)	High-current state	12	-	16	mA
Supply Current Ratio	Icc(High)/Icc	Measured as a ratio of High	1.9	-	-	-
	(Low)	current to low current				
Output Rise time	Tr	Output slew rate, $Rl=100\Omega$	0	-	1.5	uS
Output Fall time	Tf	Output slew rate, $Rl=100\Omega$	0	-	1.5	uS

Operating Characteristics

Characteristics	Symbol	Test Condition	Min	Тур	Max.	Units
Operate Point	Bop	% of Pk-Pk, normalized	-	60	-	%
		internal signal				
Release Point	Brp	% of Pk-Pk, normalized	-	40	-	%
		internal signal				
Operating Frequency	F_fwd		0	-	5	kHz
Max Sudden Signal	B(n+1)/B(n)	Adjacent Peak to Peak	-	0.6	-	-
Amplitude Change		change				
Front End Chopping			-	400	-	kHz
Frequency						

Sensing Configuration:

S

Magnetic Sensor Systems LLC 1738 Eaton Rd. Berkley, MI 48072

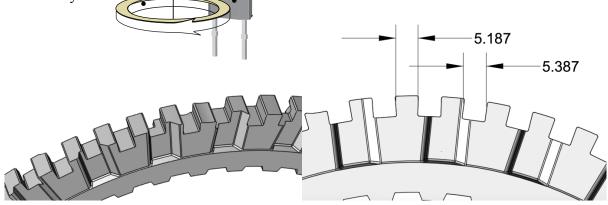
Confidential

www.magsensorsystems.com 313-355-3213

Output based on Target Rotation Direction:

Basically, as the gear rotates across the face of the H version of the IC from pin-1 to pin-2, the output starts high (see chart below) and then transitions low. More readily understood as High Over Tooth (HOT). Unfortunately, we only had the H version in stock and our gear rotates from pin-2 to pin-1 producing a Low Over Tooth output (LOT).

Due to mechanical constraints, the orientation of the Hall IC to the clock wise rotation has to be pin-2 to pin-1 therefore in the future the more appropriate version of the IC to use would be the L version. Which is opposite in polarity which would give us the desired but not mandatory HOT condition.

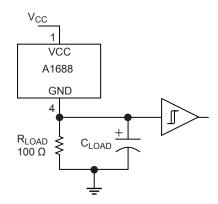

Table 1: Output Polarity when a South Pole Passesthe Package Face in the Indicated Rotation Direction

Rotation Direction	Part Type			
Rotation Direction	A1688LUBxx-H-x	A1688LUBxx-L-x		
$Pin \ 1 \rightarrow Pin \ 2$	I _{CC(HIGH)}	I _{CC(LOW)}		
$\operatorname{Pin} 2 \to \operatorname{Pin} 1$	I _{CC(LOW)}	I _{CC(HIGH)}		

Note: Switching actually occurs over mid tooth or valley with this IC.

Target Geometry:

A 60-tooth target was is suggested for use. Both the teeth and valleys need to be near **5.0mm** wide. They should also be 5mile.



Confidential

Pin-out

Red = Vcc White = Vout

Circuit Example:

Confidential

www.magsensorsystems.com 313-355-3213