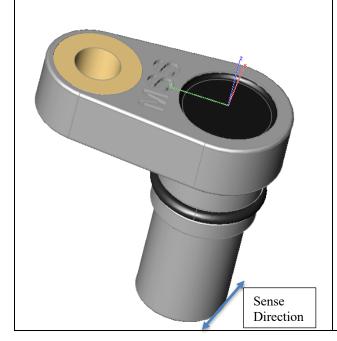
Hyzon Speed & Direction Sensor


4-18-2021 Updated: 1/7/22

Differential Magnetic Speed and Direction Sensors

Description

This sensor uses a Back Biased differential Hall Effect device to measure the passing teeth of a ferrous target. The sensor face must be oriented such that, the bolt hole is in line with the direction of rotation.

The device uses an industry standard 2 level current output (nominals: 7mA and 14mA).

Features and Benefits

- Senses motion of a ferrous object, no additional magnet(s) need to be added
- 2-wire Current output
- Extremely small size (Body: OD:13.75mm x L:38mm), and 38mm flange
- Very Immune to EMC
- True Zero Speed
- AGC (Automatic Gain Control)
- AOA (Automatic Offset Adjust)
- Under voltage Lockout

Absolute Maximum Ratings

Characteristics	Symbol	Notes	Rating	Units
Forward Supply	Vcc		28	V
Voltage				
Reverse-Supply	Vrcc		-18	V
Voltage				
Operating Ambient	Ta		-40 to 150	С
Temp				

Electrical Characteristics

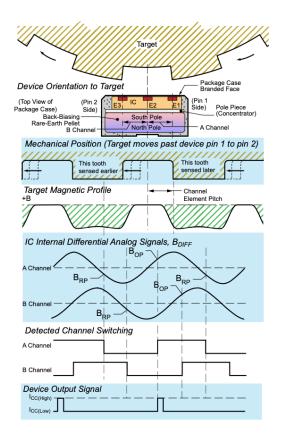
Characteristics	Symbol	Test Condition	Min	Тур	Max.	Units
Supply Voltage	Vcc	T<=150C	4.0	-	24	V
Undervoltage Lockout	Vcc(uv)	Vcc, 0-5 or 5-0	-	3.6	3.95	V

Magnetic Sensor Systems LLC

	T	T	1			
Reverse Supply	Ircc	Vcc = Vrcc(max)	-	-	-10	mA
Current						
Supply Zener Clamp	Vzs	$Icc = Icc_max + 3mA,$	28	-	-	V
Voltage		Ta=25C				
Supply Zener Current	Icc	Ta=25C, Vcc=28V	-	-	19	mA
Chopping frequency	Fc	Ta =25C	-	400	-	kHz
Bypass Capacitance		Vcc to GND	-	2200	-	pF

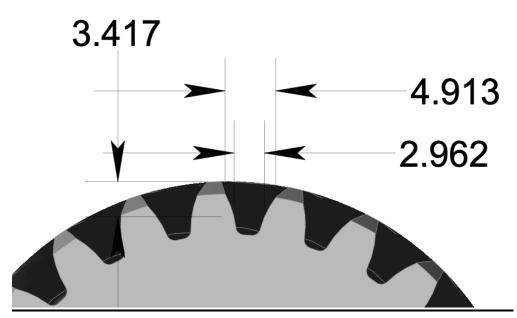
Output Characteristics

Characteristics	Symbol	Test Condition	Min	Тур	Max.	Units
Power-on State	POS	Vcc > Vcc(min)	-	Icc(Low)	-	-
Power-on time	tpo	Time from Vcc>Vcc(min)	-	-	1	mS
		to calibration start				
Supply Current	Icc(low)	Low-Current State	5.9	7	8.0	mA
	Icc(High)	High-current state	12	14	16	mA
Supply Current Ratio	Icc(High)/Icc	Measured as a ratio of High	1.9	-	-	-
	(Low)	current to low current				
Output Rise time	Tr	Output slew rate, Rl= 100Ω	0	2	4	uS
Output Fall time	Tf	Output slew rate, Rl= 100Ω	0	2	4	uS


Operating Characteristics

Characteristics	Symbol	Test Condition	Min	Тур	Max.	Units
Operate Point	Bop	% of Pk-Pk, normalized	-	670	-	%
		internal signal				
Release Point	Brp	% of Pk-Pk, normalized	-	30	-	%
		internal signal				
Operating Differential	Bdiff(pk-pk)		30	-	-	G
Magnetic Input						
Operating Frequency	F_fwd	Narrow Option	0	ı	12	kHz
Operating Frequency	F_rev	Narrow Option	0	ı	7	kHz
Operating Frequency	F_ND	Narrow Option	0	ı	4	kHz
Allowable	Bseq		0.7	-	1.3	-
Differential						
Sequential Signal						
Variation						
Pulse Width Forward		Narrow Option	38	45	52	μS
Pulse Width Reverse		Narrow Option	76	90	104	μS
Pulse Width non-		Narrow Option	153	180	201	μS
direction						

4-18-2021 Updated: 1/7/22

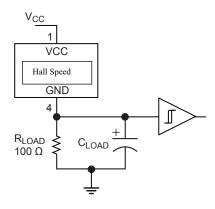

4-18-2021 Updated: 1/7/22

Sensing Configuration:

Target Geometry:

A nominal 4.0mm wide teeth and valleys should be used as well as at least 4mm of valley depth. Hyzon Target example below is acceptable.

Magnetic Sensor Systems LLC 1738 Eaton Rd. Berkley, MI 48072


Confidential

4-18-2021 Updated: 1/7/22

Pin-out

Red = VccWhite = Vout

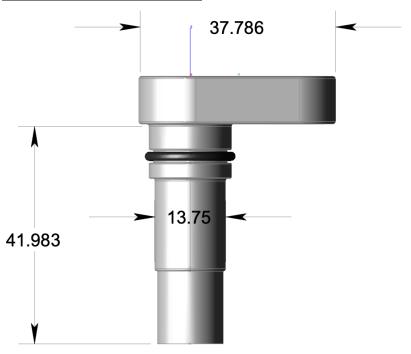

Circuit Example:

Figure 1: Typical Application Circuit

Base dimensions

(Speed and Direction Sensor)

V1.1

4-18-2021 Updated: 1/7/22

Magnetic Sensor Systems LLC

Appendix A: Setting choices. This Product uses: -FSNHPYUE-A

Configuration Options **ASIL Protocol:** -A - ASIL protocol enabled [blank] - ASIL protocol disabled **Magnetic Temperature Compensation:** E - 0.16%/°C G-0.04%/°C Extended Sudden Air Gap: K - Timed resets enabled U - Feature not enabled **Calibration Mode Non-Direction Pulses:** O - Blanked, no output during Calibration Y - Pulses allowed during Calibration **Running Mode Non-Direction Pulses:** B - Blanked, no output during Running mode P - Pulses allowed during Running mode Vibration Immunity / Direction Change: L - Low vibration immunity with immediate direction change detection H - High vibration immunity Pulse Widths (Typical): I – Intermediate, Forward = 60 μs, Reverse = 120 μs, Non-Direction = 30 μs N-Narrow, Forward = 45 μs , Reverse = 90 μs , Non-Direction = 180 μs W –Wide, Forward = 45 μ s, Reverse = 180 μ s, Non-Direction = 360 μ s **Number of Pulses:**

F - Forward, pin 1 to pin 2

Rotation Direction:

S - Single, one pulse per magnetic pole pair

 $R-Forward,\,pin\;2\;to\;pin\;1$