Roush-Speed Sensor - Preliminary

Wheel Speed Sensor

Description **Features and Benefits** This sensor uses a Back Biased differential Hall Effect Senses motion of a ferrous object, no • device to measure the passing teeth of a ferrous target. additional magnet(s) need to be added The sensor face must be oriented such that, the bolt hole 2-wire Current output • is perpendicular with the direction of rotation. Short and Long housing versions • The device uses an industry standard 2 level current Very Immune to EMC • output (nominals: 7mA and 14mA). True Zero Speed • AGC (Automatic Gain Control) • AOA (Automatic Offset Adjust) • Under voltage Lockout • Rotation of gear teeth

Absolute Maximum Ratings

Characteristics	Symbol	Notes	Rating	Units
Forward Supply	Vcc		28	V
Voltage				
Reverse-Supply	Vrcc		-18	V
Voltage	*			
Operating Ambient	Та		-40 to 150	С
Temp				

Electrical Characteristics

Characteristics	Symbol	Test Condition	Min	Тур	Max.	Units
Supply Voltage	Vcc	T<=150C	4.0	-	24	V
Undervoltage Lockout	Vcc(uv)	Vcc, 0-5 or 5-0	-	3.6	3.95	V
Reverse Supply	Ircc	Vcc = Vrcc(max)	-	-	-10	mA
Current						
Supply Zener Clamp	Vzs	$Icc = Icc_max + 3mA,$	28	-	-	V
Voltage		Ta=25C				

Magnetic Sensor Systems LLC 1738 Eaton Rd. Berkley, MI 48072 Confidential

www.magsensorsystems.com 313-355-3213

Magnetic Sensor Systems LLC

MSS

Supply Zener Current	Icc	Ta=25C, Vcc=28V	-	-	19	mA
Chopping frequency	Fc	Ta =25C	-	400	-	kHz
Bypass Capacitance		Vcc to GND	-	2200	-	pF

Output Characteristics

Characteristics	Symbol	Test Condition	Min	Тур	Max.	Units
Power-on State	POS	-H	-	Icc(Hig	-	-
				h)		
		-L	-	Icc(Lo	-	-
				w)		
Supply Current	Icc(low)	Low-Current State	5.9	-	8.4	mA
	Icc(High)	High-current state	12	-	16	mA
Supply Current Ratio	Icc(High)/Icc	Measured as a ratio of High	1.9	-		-
	(Low)	current to low current				
Output Rise time	Tr	Output slew rate, $Rl=100\Omega$	0		1.5	uS
Output Fall time	Tf	Output slew rate, Rl=100 Ω	0		1.5	uS
Operating Characteristics						

Operating Characteristics

Characteristics	Symbol	Test Condition	Min	Тур	Max.	Units
Operate Point	Bop	% of Pk-Pk, normalized		60	-	%
-	_	internal signal				
Release Point	Brp	% of Pk-Pk, normalized	1	40	-	%
	-	internal signal				
Operating Frequency	F_fwd		0	-	5	kHz
Max Sudden Signal	B(n+1)/B(n)	Adjacent Peak to Peak	-	0.6	-	-
Amplitude Change		change				
Sudden air-gap	∂d	Nominal tooth to tooth air-	-	0.8	-	mm
distance		gap change allowable				
Front End Chopping			-	400	-	kHz
Frequency						
Max air-gap	a-g	Max achievable start-up	-	-	3.0	mm
Mechanical		(Distance from housing face				
		to target tooth)				

Sensing Configuration:

Magnetic Sensor Systems LLC 1738 Eaton Rd. Berkley, MI 48072

Confidential

www.magsensorsystems.com 313-355-3213

2-5-2019

Output based on Target Rotation Direction:

Basically, as the gear rotates across the face of the H version of the IC from pin-1 to pin-2, the output starts high (see chart below) and then transitions low. More readily understood as High Over Tooth (HOT). When looking at the bottom (sensing face of the sensor) with the tab pointing up, you will get high over tooth with a rotation from right to left. Note: Switching actually occurs over mid tooth or valley with this IC.

Bottom view (sensing face)

Target Geometry:

A 32-tooth target was is suggested for use. Both the teeth and valleys need to be nominally 4.32mm wide.

Maximum X misalignment +/-10mm Maximum Y misalignment +/-2.0mm

Front/Radial Target:

Magnetic Sensor Systems LLC 1738 Eaton Rd. Berkley, MI 48072

Confidential

www.magsensorsystems.com 313-355-3213

Figure 1: Typical Application Circuit

Magnetic Sensor Systems LLC 1738 Eaton Rd. Berkley, MI 48072 Confidential

www.magsensorsystems.com 313-355-3213